Spike-Frequency Adaptation
نویسندگان
چکیده
When stimulated with a constant stimulus, many neurons initially respond with a high spike frequency that then decays down to a lower steady-state frequency (Fig. 1 A). This dynamics of the spike frequency response is referred to as “spike-frequency adaptation”. Spike-frequency adaptation is a process that is slower than the dynamics of action potential generation. Spikefrequency adaptation by this definition is an aspect of the neuron’s super-threshold firing regime, although the mechanisms causing spike-frequency adaptation could also be at work in the neuron’s subthreshold regime.
منابع مشابه
Spike-frequency adaptation separates transient communication signals from background oscillations.
Spike-frequency adaptation is a prominent feature of many neurons. However, little is known about its computational role in processing behaviorally relevant natural stimuli beyond filtering out slow changes in stimulus intensity. Here, we present a more complex example in which we demonstrate how spike-frequency adaptation plays a key role in separating transient signals from slower oscillatory...
متن کاملCalcium-activated chloride channels: a new target to control the spiking pattern of neurons
The nature of encoded information in neural circuits is determined by neuronal firing patterns and frequencies. This paper discusses the molecular identity and cellular mechanisms of spike-frequency adaptation in the central nervous system (CNS). Spike-frequency adaptation in thalamocortical (TC) and CA1 hippocampal neurons is mediated by the Ca2+-activated Cl- channel (CACC) anoctamin-2 (ANO2)...
متن کاملSpike Frequency Adaptation in Neurons of the Central Nervous System
Neuronal firing patterns and frequencies determine the nature of encoded information of the neurons. Here we discuss the molecular identity and cellular mechanisms of spike-frequency adaptation in central nervous system (CNS) neurons. Calcium-activated potassium (KCa) channels such as BKCa and SKCa channels have long been known to be important mediators of spike adaptation via generation of a l...
متن کاملA firing-rate model of spike-frequency adaptation in sinusoidally-driven thalamocortical relay neurons
In a systematic study of thalamocortical relay neuron responses to sinusoidal current injection [J. Neurophysiol. 83 (1), 588], we found that the Fourier fundamental of tonic responses was regularly phase advanced during low temporal frequency stimulation (1/10 cycles at 0.1 Hz). We hypothesized that such phase advances of the Fourier fundamental response were due to a slow spike-frequency adap...
متن کاملA model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons.
Subthalamic nucleus neurons exhibit reverse spike-frequency adaptation. This occurs only at firing rates of 20-50 spikes/s and higher. Over this same frequency range, there is an increase in the steady-state frequency-intensity (F-I) curve's slope (the secondary range). Specific blockade of high-voltage activated calcium currents reduced the F-I curve slope and reverse adaptation. Blockade of c...
متن کامل